PROPAGATION OF LIGHT THROUGH AN OPTICAL FIBER

35. PROPAGATION OF LIGHT THROUGH AN OPTICAL FIBER

What is Optical Fiber?

An **optical fiber** is a **thin, flexible, transparent wire** made of glass or plastic that transmits **light signals** from one point to another with **very low loss**.

It works based on the principle of **Total Internal Reflection (TIR)**.

Structure of Optical Fiber:

An optical fiber has three main parts:

1. Core:

- The **inner part** through which the light travels.
- Made of high refractive index material.

2. Cladding:

- Surrounds the core.
- Has a **lower refractive index** than the core to allow total internal reflection.

3. Outer Jacket:

Protective layer to shield the fiber from damage.

Principle: Total Internal Reflection (TIR)

- When light enters the fiber at a specific angle, it gets totally reflected at the core-cladding boundary.
- This reflection keeps happening as the light travels, bouncing back and forth inside the core without escaping.
- This process is called **Total Internal Reflection**.

Propagation Process:

1. Light enters the fiber at one end at a suitable angle.

- 2. It strikes the **core-cladding boundary** at an angle **greater than the critical angle**.
- **3. Total internal reflection** occurs, and the light continues to bounce within the core.
- 4. The light reaches the **other end of the fiber** with **minimal loss**.

Conditions for TIR:

• The core must have higher refractive index (n₁) than the cladding (n₂).

$$(n_1 > n_2)$$

• The angle of incidence inside the core must be greater than the critical angle.

Here is a simple and clear explanation of the requested **optical fiber concepts**, in your preferred format:

36. ACCEPTANCE ANGLE, NUMERICAL APERTURE, TYPES OF OPTICAL FIBER, AND REFRACTIVE INDEX PROFILE

What is Acceptance Angle?

- The **acceptance angle** is the **maximum angle** at which light can enter the fiber and still be guided through it by **total internal reflection**.
- Light rays entering the fiber within this angle will propagate through the core.

Formula:

$$\sin \theta_0 = NA$$

Where:

- θ_0 = acceptance angle (maximum entrance angle)
- NA = numerical aperture

What is Numerical Aperture (NA)?

- Numerical Aperture is a measure of the light-gathering ability of an optical fiber.
- It defines how much light can be accepted into the fiber.

Formula:

$$\mathrm{NA} = \sqrt{n_1^2 - n_2^2}$$

Where:

- n₁ = refractive index of the core
- n_2 = refractive index of the cladding

Types of Optical Fiber

Optical fibers are classified based on:

A. Mode of Transmission

1. Single-mode Fiber

- Carries only one light mode.
- Used for **long-distance** communication.
- \circ Core diameter is **very small** (~8–10 µm).

2. Multi-mode Fiber

- Carries multiple light modes.
- Used for **short distances**.
- Core diameter is larger (~50–100 μm).

B. Refractive Index Profile

1. Step-Index Fiber

- The refractive index **changes abruptly** at the core-cladding boundary.
- Used in both single and multi-mode types.

2. Graded-Index Fiber

- The refractive index of the core **gradually decreases** from the center to the edge.
- Reduces dispersion and improves performance in multi-mode fibers.

37. DOUBLE CIRCLE METHOD

What is the Double Circle Method?

The **Double Circle Method** is a **graphical method** used in optics to **determine the numerical aperture (NA)** and **acceptance angle** of an **optical fiber** using geometrical construction.

It is a **visual technique** used to understand how light enters and travels through the optical fiber.

Purpose of the Method:

- •To illustrate how light rays enter the optical fiber and how total internal reflection happens.
- To **graphically find** the **acceptance angle** and **NA** using two concentric circles representing the core and cladding.

Construction of the Double Circle Method:

- 1. Draw two concentric circles:
 - o Inner circle represents the core.
 - Outer circle represents the cladding.

2. Mark the refractive indices:

- Core refractive index = n_1
- Cladding refractive index = n_2 (with $n_2 < n_1$)

From a point on the fiber axis (center of the circles):

• Draw a **light ray** entering the fiber at an angle θ_0 with respect to the fiber axis (the central line).

3. Use geometry and Snell's law:

- $n_0 \sin \theta_0 = n_1 \sin \theta_c$
- Here,
 - n_0 = refractive index of air (usually \approx 1)
 - θ_0 = acceptance angle (in air)
 - θ_c = critical angle inside the core at the core-cladding interface.

Adjust the incoming ray so that the **angle at the core-cladding interface** is **equal to or greater than the critical angle**, ensuring total internal reflection.

Here is a clear and simple explanation of **Losses in Optical Fiber** and **Applications of Optical Fiber**, in your preferred format:

38. LOSSES IN OPTICAL FIBER

What are Losses in Optical Fiber?

Losses refer to the **reduction in light intensity** as it travels through the optical fiber.

These losses affect the efficiency of signal transmission.

Types of Losses:

1. Absorption Loss

- ^o Caused by impurities and defects in the fiber material.
- ∘ Light energy is absorbed and converted to heat.

2. Scattering Loss

- Mainly Rayleigh scattering due to microscopic fluctuations in the material density.
- Scatters light in all directions, reducing transmitted intensity.

3. Bending Loss

- o Occurs when the fiber is bent beyond a certain radius.
- ∘ Light escapes the core because total internal reflection fails at sharp bends.

4. Connector and Splice Loss

Losses occur at fiber joints or connectors due to misalignment or gaps.

5. Dispersion Loss

 Pulse spreading causes signal overlap and reduces clarity (not energy loss but affects quality).

39. APPLICATIONS OF OPTICAL FIBER

1. Communication

 Used extensively in telephone networks, internet cables, and television broadcasting due to high bandwidth and low loss.

2. Medical Field

- Used in **endoscopy** to view inside the human body.
- •Used in laser surgeries and imaging.

3. Military and Aerospace

- •Used in **secure communication** systems.
- •Used in sensors and guidance systems.

4. Industrial Applications

- •Used for data transmission in harsh environments.
- Used in **inspection and monitoring** with fiber optic sensors.

5. Networking

• Backbone for local area networks (LANs) and data centers.

6. Lighting and Decorations

•Used in fiber optic lights and display signs.